Screen Shot 2018-11-16 at 10.45.17

Introduction and Credits

This article is based on an unpublished paper, “Intent of Specifications for Harmonized Dispatching — Groups of Passenger Elevators/Lifts for Office Buildings” by Barker Mohandas, LLC, and our prior project specifications covering such designs. Our designs as covered herein are now published for use without any restrictions from us. All designs by others that are referenced retain their exclusive rights.

This is also a case study on the designs as they are being built now by KONE under our specifications for the PNB 118 project in Kuala Lumpur. Some of our initial fixture sketches are shown, along with some in-progress project graphics by KONE. A key contributor to this article has been KONE’s Dr. Janne Sorsa, who has also provided updated and expanded simulations initially provided by Dr. Marja-Liisa Siikonen. They have both been instrumental in taking the designs for the project forward.

It is also essential to recognize the foundational work of Dr. Joris Schröder and Dr. Paul Friedli in Schindler’s Miconic 10® (M10) system, introduced in the early 1990s. This was the first commercially successful destination-dispatching system and, perhaps, the first major visible change in the automatic elevator. An excellent reference on “M10” is the article by Joris Schröder in the March 1990 edition of ELEVATOR WORLD.[1]

We have retained the Schindler techniques functionally at the main lobby for their benefits in handling and organizing incoming traffic and added some user improvements at that location (while we recognize that these improvements have likely already been built somewhere). However, in the cabs and at the office floors, things are different, yet also familiar in restoring and enhancing conventional elements in ways we believe improve known prior such techniques for office buildings.

Our goal was to bring predeveloped elements together in a way multiple elevator companies could build the designs, using a combination of dispatching techniques they had already developed underneath, overlayed with today’s touchscreen displays and employing some contract engineering. The word “harmonized” then came to mind. Our motivation was to improve lunchtime traffic performance for double-deck elevators (primarily) and single-deck elevators (secondarily), and improve passenger interfaces for both.

This is not a detailed work on elevator dispatching or its smart algorithms, which decide which elevators in a group are to serve which calls. Statements made about the development of the logic are to the best of your author’s knowledge. Experts in the field will likely know of various recent studies, including a major body of work by Janne Sorsa.[2] A small part of that work pertaining to double-deck elevators was partially inspired by our project designs.

Special credit is also extended to Dewhurst PLC, an independent U.K. provider of fixtures to the elevator/lift, keypad and rail industries, for its details of keypad buttons, arrows and car letter signs used in our original sketches. Also, the project graphics are in-progress screenshots by KONE that show industrial design thought extending beyond our sketches, which were only functional drawings.


Click here to read the entire article